ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.03835
14
74

On the Use of BERT for Automated Essay Scoring: Joint Learning of Multi-Scale Essay Representation

8 May 2022
Yongjie Wang
Chuan Wang
Ruobing Li
Hui-Ching Lin
ArXivPDFHTML
Abstract

In recent years, pre-trained models have become dominant in most natural language processing (NLP) tasks. However, in the area of Automated Essay Scoring (AES), pre-trained models such as BERT have not been properly used to outperform other deep learning models such as LSTM. In this paper, we introduce a novel multi-scale essay representation for BERT that can be jointly learned. We also employ multiple losses and transfer learning from out-of-domain essays to further improve the performance. Experiment results show that our approach derives much benefit from joint learning of multi-scale essay representation and obtains almost the state-of-the-art result among all deep learning models in the ASAP task. Our multi-scale essay representation also generalizes well to CommonLit Readability Prize data set, which suggests that the novel text representation proposed in this paper may be a new and effective choice for long-text tasks.

View on arXiv
Comments on this paper