ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.03554
29
5

Time-Series Domain Adaptation via Sparse Associative Structure Alignment: Learning Invariance and Variance

7 May 2022
Zijian Li
Ruichu Cai
Jiawei Chen
Yuguang Yan
Wei Chen
Keli Zhang
Junjian Ye
    CML
    TTA
    AI4TS
ArXivPDFHTML
Abstract

Domain adaptation on time-series data is often encountered in the industry but received limited attention in academia. Most of the existing domain adaptation methods for time-series data borrow the ideas from the existing methods for non-time series data to extract the domain-invariant representation. However, two peculiar difficulties to time-series data have not been solved. 1) It is not a trivial task to model the domain-invariant and complex dependence among different timestamps. 2) The domain-variant information is important but how to leverage them is almost underexploited. Fortunately, the stableness of causal structures among different domains inspires us to explore the structures behind the time-series data. Based on this inspiration, we investigate the domain-invariant unweighted sparse associative structures and the domain-variant strengths of the structures. To achieve this, we propose Sparse Associative structure alignment by learning Invariance and Variance (SASA-IV in short), a model that simultaneously aligns the invariant unweighted spare associative structures and considers the variant information for time-series unsupervised domain adaptation. Technologically, we extract the domain-invariant unweighted sparse associative structures with a unidirectional alignment restriction and embed the domain-variant strengths via a well-designed autoregressive module. Experimental results not only testify that our model yields state-of-the-art performance on three real-world datasets but also provide some insightful discoveries on knowledge transfer.

View on arXiv
Comments on this paper