ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.03408
14
4

HRCTCov19 -- A High-Resolution Chest CT Scan Image Dataset for COVID-19 Diagnosis and Differentiation

6 May 2022
Iraj Abedi
Mahsa Vali
Bentolhoda Otroshi Shahreza
Maryam Zamanian
Hamidreza Bolhasani
ArXivPDFHTML
Abstract

Introduction: During the COVID-19 pandemic, computed tomography (CT) was a popular method for diagnosing COVID-19 patients. HRCT (High-Resolution Computed Tomography) is a form of computed tomography that uses advanced methods to improve image resolution. Publicly accessible COVID-19 CT image datasets are very difficult to come by due to privacy concerns, which impedes the study and development of AI-powered COVID-19 diagnostic algorithms based on CT images. Data description: To address this problem, we have introduced HRCTCov19, a new COVID-19 high-resolution chest CT scan image dataset that includes not only COVID-19 cases of Ground Glass Opacity (GGO), Crazy Paving, and Air Space Consolidation but also CT images of cases with negative COVID-19. The HRCTCov19 dataset, which includes slice-level, and patient-level labels, has the potential to aid COVID-19 research, especially for diagnosis and differentiation using artificial intelligence algorithms, machine learning, and deep learning methods. This dataset is accessible through the web at: http://databiox.com and includes 181,106 chest HRCT images from 395 patients with four labels: GGO, Crazy Paving, Air Space Consolidation, and Negative. Keywords: COVID-19, CT scan, Computed Tomography, Chest Image, Dataset, Medical Imaging

View on arXiv
Comments on this paper