ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.03169
19
5

The NT-Xent loss upper bound

6 May 2022
Wilhelm Ågren
    SSL
ArXivPDFHTML
Abstract

Self-supervised learning is a growing paradigm in deep representation learning, showing great generalization capabilities and competitive performance in low-labeled data regimes. The SimCLR framework proposes the NT-Xent loss for contrastive representation learning. The objective of the loss function is to maximize agreement, similarity, between sampled positive pairs. This short paper derives and proposes an upper bound for the loss and average similarity. An analysis of the implications is however not provided, but we strongly encourage anyone in the field to conduct this.

View on arXiv
Comments on this paper