ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.02428
22
4
v1v2v3v4 (latest)

ActorRL: A Novel Multi-level Receptive Fields Adversary Reinforcement Learning for Automoumous Intersection Management

5 May 2022
Guanzhou Li
Jianping Wu
Yujing He
ArXiv (abs)PDFHTML
Abstract

As an emerging technology, Connected Autonomous Vehicles are believed to be able to pass intersections with greater efficiency, and related researches have been conducted for decades, however, compared to pre-designed model-based or optimization-based scheduling passing plan, the application of distributed reinforcement learning in the field of autonomous intersection management (AIM) has only begun to emerge in the past two years and confronts many challenges. Our study design a multi-level learning framework with various observation scope, action steps and reward period to make full use of information around vehicle and help to figure out the best interactive strategy for all vehicles. Our experiment has proven this framework can significantly enhance safety compared to RL without it, and improve efficiency compared to baselines.

View on arXiv
Comments on this paper