ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.01293
19
6

A Survey of Deep Learning Models for Structural Code Understanding

3 May 2022
Ruoting Wu
Yu-xin Zhang
Qibiao Peng
Liang Chen
Zibin Zheng
ArXivPDFHTML
Abstract

In recent years, the rise of deep learning and automation requirements in the software industry has elevated Intelligent Software Engineering to new heights. The number of approaches and applications in code understanding is growing, with deep learning techniques being used in many of them to better capture the information in code data. In this survey, we present a comprehensive overview of the structures formed from code data. We categorize the models for understanding code in recent years into two groups: sequence-based and graph-based models, further make a summary and comparison of them. We also introduce metrics, datasets and the downstream tasks. Finally, we make some suggestions for future research in structural code understanding field.

View on arXiv
Comments on this paper