ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.00548
26
1

Large-Scale Multi-Document Summarization with Information Extraction and Compression

1 May 2022
Ning Wang
Han Liu
Diego Klabjan
ArXivPDFHTML
Abstract

We develop an abstractive summarization framework independent of labeled data for multiple heterogeneous documents. Unlike existing multi-document summarization methods, our framework processes documents telling different stories instead of documents on the same topic. We also enhance an existing sentence fusion method with a uni-directional language model to prioritize fused sentences with higher sentence probability with the goal of increasing readability. Lastly, we construct a total of twelve dataset variations based on CNN/Daily Mail and the NewsRoom datasets, where each document group contains a large and diverse collection of documents to evaluate the performance of our model in comparison with other baseline systems. Our experiments demonstrate that our framework outperforms current state-of-the-art methods in this more generic setting.

View on arXiv
Comments on this paper