ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.12900
51
6
v1v2v3 (latest)

Cross-Camera Trajectories Help Person Retrieval in a Camera Network

27 April 2022
Xin Zhang
Xiaohua Xie
Jianhuang Lai
Weishi Zheng
ArXiv (abs)PDFHTML
Abstract

We are concerned with retrieving a query person from multiple videos captured by a non-overlapping camera network. Existing methods often rely on purely visual matching or consider temporal constraints but ignore the spatial information of the camera network. To address this issue, we propose a pedestrian retrieval framework based on cross-camera trajectory generation, which integrates both temporal and spatial information. To obtain pedestrian trajectories, we propose a novel cross-camera spatio-temporal model that integrates pedestrians' walking habits and the path layout between cameras to form a joint probability distribution. Such a spatio-temporal model among a camera network can be specified using sparsely sampled pedestrian data. Based on the spatio-temporal model, cross-camera trajectories can be extracted by the conditional random field model and further optimized by restricted non-negative matrix factorization. Finally, a trajectory re-ranking technique is proposed to improve the pedestrian retrieval results. To verify the effectiveness of our method, we construct the first cross-camera pedestrian trajectory dataset, the Person Trajectory Dataset, in real surveillance scenarios. Extensive experiments verify the effectiveness and robustness of the proposed method.

View on arXiv
Comments on this paper