ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.11326
69
30
v1v2v3 (latest)

The Multiscale Structure of Neural Network Loss Functions: The Effect on Optimization and Origin

24 April 2022
Chao Ma
D. Kunin
Lei Wu
ArXiv (abs)PDFHTML
Abstract

Local quadratic approximation has been extensively used to study the optimization of neural network loss functions around the minimum. Though, it usually holds in a very small neighborhood of the minimum, and cannot explain many phenomena observed during the optimization process. In this work, we study the structure of neural network loss functions and its implication on optimization in a region beyond the reach of good quadratic approximation. Numerically, we observe that neural network loss functions possesses a multiscale structure, manifested in two ways: (1) in a neighborhood of minima, the loss mixes a continuum of scales and grows subquadratically, and (2) in a larger region, the loss shows several separate scales clearly. Using the subquadratic growth, we are able to explain the Edge of Stability phenomenon[4] observed for gradient descent (GD) method. Using the separate scales, we explain the working mechanism of learning rate decay by simple examples. Finally, we study the origin of the multiscale structure and propose that the non-uniformity of training data is one of its cause. By constructing a two-layer neural network problem we show that training data with different magnitudes give rise to different scales of the loss function, producing subquadratic growth or multiple separate scales.

View on arXiv
Comments on this paper