ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.10543
23
14

Zero and Few-shot Learning for Author Profiling

22 April 2022
Mara Chinea-Rios
Thomas Müller
Gretel Liz De la Pena Sarracén
Francisco Rangel
Marc Franco-Salvador
ArXivPDFHTML
Abstract

Author profiling classifies author characteristics by analyzing how language is shared among people. In this work, we study that task from a low-resource viewpoint: using little or no training data. We explore different zero and few-shot models based on entailment and evaluate our systems on several profiling tasks in Spanish and English. In addition, we study the effect of both the entailment hypothesis and the size of the few-shot training sample. We find that entailment-based models out-perform supervised text classifiers based on roberta-XLM and that we can reach 80% of the accuracy of previous approaches using less than 50\% of the training data on average.

View on arXiv
Comments on this paper