ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.09595
19
13

Exploring Continuous Integrate-and-Fire for Adaptive Simultaneous Speech Translation

22 March 2022
Chih-Chiang Chang
Hung-yi Lee
ArXivPDFHTML
Abstract

Simultaneous speech translation (SimulST) is a challenging task aiming to translate streaming speech before the complete input is observed. A SimulST system generally includes two components: the pre-decision that aggregates the speech information and the policy that decides to read or write. While recent works had proposed various strategies to improve the pre-decision, they mainly adopt the fixed wait-k policy, leaving the adaptive policies rarely explored. This paper proposes to model the adaptive policy by adapting the Continuous Integrate-and-Fire (CIF). Compared with monotonic multihead attention (MMA), our method has the advantage of simpler computation, superior quality at low latency, and better generalization to long utterances. We conduct experiments on the MuST-C V2 dataset and show the effectiveness of our approach.

View on arXiv
Comments on this paper