ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.08759
27
39

Edge-enhanced Feature Distillation Network for Efficient Super-Resolution

19 April 2022
Yan Wang
    SupR
ArXivPDFHTML
Abstract

With the recently massive development in convolution neural networks, numerous lightweight CNN-based image super-resolution methods have been proposed for practical deployments on edge devices. However, most existing methods focus on one specific aspect: network or loss design, which leads to the difficulty of minimizing the model size. To address the issue, we conclude block devising, architecture searching, and loss design to obtain a more efficient SR structure. In this paper, we proposed an edge-enhanced feature distillation network, named EFDN, to preserve the high-frequency information under constrained resources. In detail, we build an edge-enhanced convolution block based on the existing reparameterization methods. Meanwhile, we propose edge-enhanced gradient loss to calibrate the reparameterized path training. Experimental results show that our edge-enhanced strategies preserve the edge and significantly improve the final restoration quality. Code is available at https://github.com/icandle/EFDN.

View on arXiv
Comments on this paper