ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.08150
25
13

Characterizing and Understanding Distributed GNN Training on GPUs

18 April 2022
Haiyang Lin
Mingyu Yan
Xiaocheng Yang
Mo Zou
Wenming Li
Xiaochun Ye
Dongrui Fan
    GNN
ArXivPDFHTML
Abstract

Graph neural network (GNN) has been demonstrated to be a powerful model in many domains for its effectiveness in learning over graphs. To scale GNN training for large graphs, a widely adopted approach is distributed training which accelerates training using multiple computing nodes. Maximizing the performance is essential, but the execution of distributed GNN training remains preliminarily understood. In this work, we provide an in-depth analysis of distributed GNN training on GPUs, revealing several significant observations and providing useful guidelines for both software optimization and hardware optimization.

View on arXiv
Comments on this paper