ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.04040
11
2

Ontology Matching Through Absolute Orientation of Embedding Spaces

8 April 2022
Jan Portisch
Guilherme Costa
Karolin Stefani
K. Kreplin
M. Hladik
Heiko Paulheim
ArXivPDFHTML
Abstract

Ontology matching is a core task when creating interoperable and linked open datasets. In this paper, we explore a novel structure-based mapping approach which is based on knowledge graph embeddings: The ontologies to be matched are embedded, and an approach known as absolute orientation is used to align the two embedding spaces. Next to the approach, the paper presents a first, preliminary evaluation using synthetic and real-world datasets. We find in experiments with synthetic data, that the approach works very well on similarly structured graphs; it handles alignment noise better than size and structural differences in the ontologies.

View on arXiv
Comments on this paper