ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.03521
19
6

DeepXPalm: Tilt and Position Rendering using Palm-worn Haptic Display and CNN-based Tactile Pattern Recognition

7 April 2022
Miguel Altamirano Cabrera
Oleg Sautenkov
Jonathan Tirado
A. Fedoseev
Pavel Kopanev
Hiroyuki Kajimoto
Tsetserukou Dzmitry
ArXivPDFHTML
Abstract

Telemanipulation of deformable objects requires high precision and dexterity from the users, which can be increased by kinesthetic and tactile feedback. However, the object shape can change dynamically, causing ambiguous perception of its alignment and hence errors in the robot positioning. Therefore, the tilt angle and position classification problem has to be solved to present a clear tactile pattern to the user. This work presents a telemanipulation system for plastic pipettes consisting of a multi-contact haptic device LinkGlide to deliver haptic feedback at the users' palm and two tactile sensors array embedded in the 2-finger Robotiq gripper. We propose a novel approach based on Convolutional Neural Networks (CNN) to detect the tilt and position while grasping deformable objects. The CNN generates a mask based on recognized tilt and position data to render further multi-contact tactile stimuli provided to the user during the telemanipulation. The study has shown that using the CNN algorithm and the preset mask, tilt, and position recognition by users is increased from 9.67% using the direct data to 82.5%.

View on arXiv
Comments on this paper