ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.03286
27
13

Entailment Graph Learning with Textual Entailment and Soft Transitivity

7 April 2022
Zhibin Chen
Yansong Feng
Dongyan Zhao
ArXivPDFHTML
Abstract

Typed entailment graphs try to learn the entailment relations between predicates from text and model them as edges between predicate nodes. The construction of entailment graphs usually suffers from severe sparsity and unreliability of distributional similarity. We propose a two-stage method, Entailment Graph with Textual Entailment and Transitivity (EGT2). EGT2 learns local entailment relations by recognizing possible textual entailment between template sentences formed by typed CCG-parsed predicates. Based on the generated local graph, EGT2 then uses three novel soft transitivity constraints to consider the logical transitivity in entailment structures. Experiments on benchmark datasets show that EGT2 can well model the transitivity in entailment graph to alleviate the sparsity issue, and lead to significant improvement over current state-of-the-art methods.

View on arXiv
Comments on this paper