ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.03257
34
1

Deep learning-based approach to reveal tumor mutational burden status from whole slide images across multiple cancer types

7 April 2022
Siteng Chen
Jin-Peng Xiang
Xiyue Wang
Jun Zhang
Sen Yang
Junzhou Huang
Wei T Yang
Jun Zheng
Xiao Han
ArXivPDFHTML
Abstract

Tumor mutational burden (TMB) is a potential genomic biomarker of immunotherapy. However, TMB detected through whole exome sequencing lacks clinical penetration in low-resource settings. In this study, we proposed a multi-scale deep learning framework to address the detection of TMB status from routinely used whole slide images for a multiple cancer TMB prediction model (MC- TMB). The MC-TMB achieved a mean area under the curve (AUC) of 0.818 (0.804-0.831) in the cross-validation cohort, which showed superior performance to each single-scale model. The improvements of MC-TMB over the single-tumor models were also confirmed by the ablation tests on x10 magnification, and the highly concerned regions typically correspond to dense lymphocytic infiltration and heteromorphic tumor cells. MC-TMB algorithm also exhibited good generalization on the external validation cohort with an AUC of 0.732 (0.683-0.761), and better performance when compared to other methods. In conclusion, we proposed a deep learning-based approach to reveal tumor mutational burden status from routinely used pathological slides across multiple cancer types.

View on arXiv
Comments on this paper