158

Multi-Scale Memory-Based Video Deblurring

Computer Vision and Pattern Recognition (CVPR), 2022
Angela Yao
Abstract

Video deblurring has achieved remarkable progress thanks to the success of deep neural networks. Most methods solve for the deblurring end-to-end with limited information propagation from the video sequence. However, different frame regions exhibit different characteristics and should be provided with corresponding relevant information. To achieve fine-grained deblurring, we designed a memory branch to memorize the blurry-sharp feature pairs in the memory bank, thus providing useful information for the blurry query input. To enrich the memory of our memory bank, we further designed a bidirectional recurrency and multi-scale strategy based on the memory bank. Experimental results demonstrate that our model outperforms other state-of-the-art methods while keeping the model complexity and inference time low. The code is available at https://github.com/jibo27/MemDeblur.

View on arXiv
Comments on this paper