67
21

Modeling Motion with Multi-Modal Features for Text-Based Video Segmentation

Abstract

Text-based video segmentation aims to segment the target object in a video based on a describing sentence. Incorporating motion information from optical flow maps with appearance and linguistic modalities is crucial yet has been largely ignored by previous work. In this paper, we design a method to fuse and align appearance, motion, and linguistic features to achieve accurate segmentation. Specifically, we propose a multi-modal video transformer, which can fuse and aggregate multi-modal and temporal features between frames. Furthermore, we design a language-guided feature fusion module to progressively fuse appearance and motion features in each feature level with guidance from linguistic features. Finally, a multi-modal alignment loss is proposed to alleviate the semantic gap between features from different modalities. Extensive experiments on A2D Sentences and J-HMDB Sentences verify the performance and the generalization ability of our method compared to the state-of-the-art methods.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.