ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.02403
16
10

Explainable Deep Learning Algorithm for Distinguishing Incomplete Kawasaki Disease by Coronary Artery Lesions on Echocardiographic Imaging

5 April 2022
Haeyun Lee
Yongsoon Eun
Jae Youn Hwang
Lucy Youngmin Eun
ArXiv (abs)PDFHTML
Abstract

Background and Objective: Incomplete Kawasaki disease (KD) has often been misdiagnosed due to a lack of the clinical manifestations of classic KD. However, it is associated with a markedly higher prevalence of coronary artery lesions. Identifying coronary artery lesions by echocardiography is important for the timely diagnosis of and favorable outcomes in KD. Moreover, similar to KD, coronavirus disease 2019, currently causing a worldwide pandemic, also manifests with fever; therefore, it is crucial at this moment that KD should be distinguished clearly among the febrile diseases in children. In this study, we aimed to validate a deep learning algorithm for classification of KD and other acute febrile diseases. Methods: We obtained coronary artery images by echocardiography of children (n = 88 for KD; n = 65 for pneumonia). We trained six deep learning networks (VGG19, Xception, ResNet50, ResNext50, SE-ResNet50, and SE-ResNext50) using the collected data. Results: SE-ResNext50 showed the best performance in terms of accuracy, specificity, and precision in the classification. SE-ResNext50 offered a precision of 76.35%, a sensitivity of 82.64%, and a specificity of 58.12%. Conclusions: The results of our study suggested that deep learning algorithms have similar performance to an experienced cardiologist in detecting coronary artery lesions to facilitate the diagnosis of KD.

View on arXiv
Comments on this paper