ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.00128
13
2

Perceptual Quality Assessment of UGC Gaming Videos

31 March 2022
Xiangxu Yu
Zhengzhong Tu
Neil Birkbeck
Yilin Wang
Balu Adsumilli
A. Bovik
ArXivPDFHTML
Abstract

In recent years, with the vigorous development of the video game industry, the proportion of gaming videos on major video websites like YouTube has dramatically increased. However, relatively little research has been done on the automatic quality prediction of gaming videos, especially on those that fall in the category of "User-Generated-Content" (UGC). Since current leading general-purpose Video Quality Assessment (VQA) models do not perform well on this type of gaming videos, we have created a new VQA model specifically designed to succeed on UGC gaming videos, which we call the Gaming Video Quality Predictor (GAME-VQP). GAME-VQP successfully predicts the unique statistical characteristics of gaming videos by drawing upon features designed under modified natural scene statistics models, combined with gaming specific features learned by a Convolution Neural Network. We study the performance of GAME-VQP on a very recent large UGC gaming video database called LIVE-YT-Gaming, and find that it both outperforms other mainstream general VQA models as well as VQA models specifically designed for gaming videos. The new model will be made public after paper being accepted.

View on arXiv
Comments on this paper