ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.16155
17
0

BBE-LSWCM: A Bootstrapped Ensemble of Long and Short Window Clickstream Models

30 March 2022
Arnab Chakraborty
Vikas Raturi
Shrutendra Harsola
ArXivPDFHTML
Abstract

We consider the problem of developing a clickstream modeling framework for real-time customer event prediction problems in SaaS products like QBO. We develop a low-latency, cost-effective, and robust ensemble architecture (BBE-LSWCM), which combines both aggregated user behavior data from a longer historical window (e.g., over the last few weeks) as well as user activities over a short window in recent-past (e.g., in the current session). As compared to other baseline approaches, we demonstrate the superior performance of the proposed method for two important real-time event prediction problems: subscription cancellation and intended task detection for QBO subscribers. Finally, we present details of the live deployment and results from online experiments in QBO.

View on arXiv
Comments on this paper