ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.16029
18
0

ReplaceBlock: An improved regularization method based on background information

30 March 2022
Zhemin Zhang
Xun Gong
Jinyi Wu
    OOD
ArXivPDFHTML
Abstract

Attention mechanism, being frequently used to train networks for better feature representations, can effectively disentangle the target object from irrelevant objects in the background. Given an arbitrary image, we find that the background's irrelevant objects are most likely to occlude/block the target object. We propose, based on this finding, a ReplaceBlock to simulate the situations when the target object is partially occluded by the objects that are deemed as background. Specifically, ReplaceBlock erases the target object in the image, and then generates a feature map with only irrelevant objects and background by the model. Finally, some regions in the background feature map are used to replace some regions of the target object in the original image feature map. In this way, ReplaceBlock can effectively simulate the feature map of the occluded image. The experimental results show that ReplaceBlock works better than DropBlock in regularizing convolutional networks.

View on arXiv
Comments on this paper