43
7
v1v2 (latest)

Speech Segmentation Optimization using Segmented Bilingual Speech Corpus for End-to-end Speech Translation

Abstract

Speech segmentation, which splits long speech into short segments, is essential for speech translation (ST). Popular VAD tools like WebRTC VAD have generally relied on pause-based segmentation. Unfortunately, pauses in speech do not necessarily match sentence boundaries, and sentences can be connected by a very short pause that is difficult to detect by VAD. In this study, we propose a speech segmentation method using a binary classification model trained using a segmented bilingual speech corpus. We also propose a hybrid method that combines VAD and the above speech segmentation method. Experimental results revealed that the proposed method is more suitable for cascade and end-to-end ST systems than conventional segmentation methods. The hybrid approach further improved the translation performance.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.