ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.14913
44
16

Moving Obstacle Avoidance: a Data-Driven Risk-Aware Approach

25 March 2022
Skylar X. Wei
Anushri Dixit
Shashank Tomar
J. W. Burdick
ArXivPDFHTML
Abstract

This paper proposes a new structured method for a moving agent to predict the paths of dynamically moving obstacles and avoid them using a risk-aware model predictive control (MPC) scheme. Given noisy measurements of the a priori unknown obstacle trajectory, a bootstrapping technique predicts a set of obstacle trajectories. The bootstrapped predictions are incorporated in the MPC optimization using a risk-aware methodology so as to provide probabilistic guarantees on obstacle avoidance. We validate our methods using simulations of a 3-dimensional multi-rotor drone that avoids various moving obstacles, such as a thrown ball and a frisbee with air drag.

View on arXiv
Comments on this paper