ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.13533
79
34
v1v2 (latest)

High-Performance Transformer Tracking

25 March 2022
Xin Chen
B. Yan
Jiawen Zhu
Dong Wang
Xiang Ruan
    ViT
ArXiv (abs)PDFHTMLGithub (26★)
Abstract

Correlation has a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion manner to consider the similarity between the template and the search region. However, the correlation operation is a local linear matching process, losing semantic information and falling into local optimum easily, which may be the bottleneck of designing high-accuracy tracking algorithms. In this work, to determine whether a better feature fusion method exists than correlation, a novel attention-based feature fusion network, inspired by Transformer, is presented. This network effectively combines the template and the search region features using attention. Specifically, the proposed method includes an ego-context augment module based on self-attention and a cross-feature augment module based on cross-attention. First, we present a Transformer tracking (named TransT) method based on the Siamese-like feature extraction backbone, the designed attention-based fusion mechanism, and the classification and regression head. Based on the TransT baseline, we further design a segmentation branch to generate an accurate mask. Finally, we propose a stronger version of TransT by extending TransT with a multi-template design and an IoU prediction head, named TransT-M. Experiments show that our TransT and TransT-M methods achieve promising results on seven popular datasets. Code and models are available at https://github.com/chenxin-dlut/TransT-M.

View on arXiv
Comments on this paper