ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.13427
16
29

Noisy Boundaries: Lemon or Lemonade for Semi-supervised Instance Segmentation?

25 March 2022
Zhenyu Wang
Yali Li
Shengjin Wang
    ISeg
ArXivPDFHTML
Abstract

Current instance segmentation methods rely heavily on pixel-level annotated images. The huge cost to obtain such fully-annotated images restricts the dataset scale and limits the performance. In this paper, we formally address semi-supervised instance segmentation, where unlabeled images are employed to boost the performance. We construct a framework for semi-supervised instance segmentation by assigning pixel-level pseudo labels. Under this framework, we point out that noisy boundaries associated with pseudo labels are double-edged. We propose to exploit and resist them in a unified manner simultaneously: 1) To combat the negative effects of noisy boundaries, we propose a noise-tolerant mask head by leveraging low-resolution features. 2) To enhance the positive impacts, we introduce a boundary-preserving map for learning detailed information within boundary-relevant regions. We evaluate our approach by extensive experiments. It behaves extraordinarily, outperforming the supervised baseline by a large margin, more than 6% on Cityscapes, 7% on COCO and 4.5% on BDD100k. On Cityscapes, our method achieves comparable performance by utilizing only 30% labeled images.

View on arXiv
Comments on this paper