ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.12752
15
105

Functional mimicry of Ruffini receptors with Fiber Bragg Gratings and Deep Neural Networks enables a bio-inspired large-area tactile sensitive skin

23 March 2022
Luca Massari
Giulia Fransvea
Jessica DÁbbraccio
M. Filosa
Giuseppe Terruso
A. Aliperta
G. DÁlesio
Martina Zaltieri
E. Schena
E. Palermo
E. Sinibaldi
C. Oddo
ArXivPDFHTML
Abstract

Collaborative robots are expected to physically interact with humans in daily living and workplace, including industrial and healthcare settings. A related key enabling technology is tactile sensing, which currently requires addressing the outstanding scientific challenge to simultaneously detect contact location and intensity by means of soft conformable artificial skins adapting over large areas to the complex curved geometries of robot embodiments. In this work, the development of a large-area sensitive soft skin with a curved geometry is presented, allowing for robot total-body coverage through modular patches. The biomimetic skin consists of a soft polymeric matrix, resembling a human forearm, embedded with photonic Fiber Bragg Grating (FBG) transducers, which partially mimics Ruffini mechanoreceptor functionality with diffuse, overlapping receptive fields. A Convolutional Neural Network deep learning algorithm and a multigrid Neuron Integration Process were implemented to decode the FBG sensor outputs for inferring contact force magnitude and localization through the skin surface. Results achieved 35 mN (IQR = 56 mN) and 3.2 mm (IQR = 2.3 mm) median errors, for force and localization predictions, respectively. Demonstrations with an anthropomorphic arm pave the way towards AI-based integrated skins enabling safe human-robot cooperation via machine intelligence.

View on arXiv
Comments on this paper