ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.11014
20
11

DHEN: A Deep and Hierarchical Ensemble Network for Large-Scale Click-Through Rate Prediction

11 March 2022
Buyun Zhang
Liangchen Luo
Xi Liu
Jay Li
Zeliang Chen
Weilin Zhang
Xiaohan Wei
Y. Hao
Michael Tsang
Wen-Jia Wang
Yang Liu
Huayu Li
Yasmine Badr
Jongsoo Park
Jiyan Yang
Dheevatsa Mudigere
Ellie Wen
    3DV
ArXivPDFHTML
Abstract

Learning feature interactions is important to the model performance of online advertising services. As a result, extensive efforts have been devoted to designing effective architectures to learn feature interactions. However, we observe that the practical performance of those designs can vary from dataset to dataset, even when the order of interactions claimed to be captured is the same. That indicates different designs may have different advantages and the interactions captured by them have non-overlapping information. Motivated by this observation, we propose DHEN - a deep and hierarchical ensemble architecture that can leverage strengths of heterogeneous interaction modules and learn a hierarchy of the interactions under different orders. To overcome the challenge brought by DHEN's deeper and multi-layer structure in training, we propose a novel co-designed training system that can further improve the training efficiency of DHEN. Experiments of DHEN on large-scale dataset from CTR prediction tasks attained 0.27\% improvement on the Normalized Entropy (NE) of prediction and 1.2x better training throughput than state-of-the-art baseline, demonstrating their effectiveness in practice.

View on arXiv
Comments on this paper