ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.06759
14
1

Adaptive Gap Entangled Polynomial Coding for Multi-Party Computation at the Edge

13 March 2022
Elahe Vedadi
Yasaman Keshtkarjahromi
H. Seferoglu
ArXivPDFHTML
Abstract

Multi-party computation (MPC) is promising for designing privacy-preserving machine learning algorithms at edge networks. An emerging approach is coded-MPC (CMPC), which advocates the use of coded computation to improve the performance of MPC in terms of the required number of workers involved in computations. The current approach for designing CMPC algorithms is to merely combine efficient coded computation constructions with MPC. Instead, we propose a new construction; Adaptive Gap Entangled polynomial (AGE) codes, where the degrees of polynomials used in computations are optimized for MPC. We show that MPC with AGE codes (AGE-CMPC) performs better than existing CMPC algorithms in terms of the required number of workers as well as storage, communication and computation load.

View on arXiv
Comments on this paper