35
34
v1v2v3 (latest)

Towards Open-Set Text Recognition via Label-to-Prototype Learning

Abstract

Scene text recognition is a popular topic and extensively used in the industry. Although many methods have achieved satisfactory performance for the close-set text recognition challenges, these methods lose feasibility in open-set scenarios, where collecting data or retraining models for novel characters could yield a high cost. For example, annotating samples for foreign languages can be expensive, whereas retraining the model each time when a novel character is discovered from historical documents costs both time and resources. In this paper, we introduce and formulate a new open-set text recognition task which demands the capability to spot and recognize novel characters without retraining. A label-to-prototype learning framework is also proposed as a baseline for the proposed task. Specifically, the framework introduces a generalizable label-to-prototype mapping function to build prototypes (class centers) for both seen and unseen classes. An open-set predictor is then utilized to recognize or reject samples according to the prototypes. The implementation of rejection capability over out-of-set characters allows automatic spotting of unknown characters in the incoming data stream. Extensive experiments show that our method achieves promising performance on a variety of zero-shot, close-set, and open-set text recognition datasets

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.