ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.03564
19
18

TIGGER: Scalable Generative Modelling for Temporal Interaction Graphs

7 March 2022
Shubham Gupta
S. Manchanda
Srikanta J. Bedathur
Sayan Ranu
ArXivPDFHTML
Abstract

There has been a recent surge in learning generative models for graphs. While impressive progress has been made on static graphs, work on generative modeling of temporal graphs is at a nascent stage with significant scope for improvement. First, existing generative models do not scale with either the time horizon or the number of nodes. Second, existing techniques are transductive in nature and thus do not facilitate knowledge transfer. Finally, due to relying on one-to-one node mapping from source to the generated graph, existing models leak node identity information and do not allow up-scaling/down-scaling the source graph size. In this paper, we bridge these gaps with a novel generative model called TIGGER. TIGGER derives its power through a combination of temporal point processes with auto-regressive modeling enabling both transductive and inductive variants. Through extensive experiments on real datasets, we establish TIGGER generates graphs of superior fidelity, while also being up to 3 orders of magnitude faster than the state-of-the-art.

View on arXiv
Comments on this paper