ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.03379
23
12

An STDP-Based Supervised Learning Algorithm for Spiking Neural Networks

7 March 2022
Zhan Hu
Tao Wang
Xiaolin Hu
ArXivPDFHTML
Abstract

Compared with rate-based artificial neural networks, Spiking Neural Networks (SNN) provide a more biological plausible model for the brain. But how they perform supervised learning remains elusive. Inspired by recent works of Bengio et al., we propose a supervised learning algorithm based on Spike-Timing Dependent Plasticity (STDP) for a hierarchical SNN consisting of Leaky Integrate-and-fire (LIF) neurons. A time window is designed for the presynaptic neuron and only the spikes in this window take part in the STDP updating process. The model is trained on the MNIST dataset. The classification accuracy approach that of a Multilayer Perceptron (MLP) with similar architecture trained by the standard back-propagation algorithm.

View on arXiv
Comments on this paper