ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.03073
22
17

ILDAE: Instance-Level Difficulty Analysis of Evaluation Data

7 March 2022
Neeraj Varshney
Swaroop Mishra
Chitta Baral
ArXivPDFHTML
Abstract

Knowledge of questions' difficulty level helps a teacher in several ways, such as estimating students' potential quickly by asking carefully selected questions and improving quality of examination by modifying trivial and hard questions. Can we extract such benefits of instance difficulty in NLP? To this end, we conduct Instance-Level Difficulty Analysis of Evaluation data (ILDAE) in a large-scale setup of 23 datasets and demonstrate its five novel applications: 1) conducting efficient-yet-accurate evaluations with fewer instances saving computational cost and time, 2) improving quality of existing evaluation datasets by repairing erroneous and trivial instances, 3) selecting the best model based on application requirements, 4) analyzing dataset characteristics for guiding future data creation, 5) estimating Out-of-Domain performance reliably. Comprehensive experiments for these applications result in several interesting findings, such as evaluation using just 5% instances (selected via ILDAE) achieves as high as 0.93 Kendall correlation with evaluation using complete dataset and computing weighted accuracy using difficulty scores leads to 5.2% higher correlation with Out-of-Domain performance. We release the difficulty scores and hope our analyses and findings will bring more attention to this important yet understudied field of leveraging instance difficulty in evaluations.

View on arXiv
Comments on this paper