ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.01993
11
31

Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values

3 March 2022
Ahmed Imtiaz Humayun
Randall Balestriero
Richard Baraniuk
ArXivPDFHTML
Abstract

We present Polarity Sampling, a theoretically justified plug-and-play method for controlling the generation quality and diversity of pre-trained deep generative networks DGNs). Leveraging the fact that DGNs are, or can be approximated by, continuous piecewise affine splines, we derive the analytical DGN output space distribution as a function of the product of the DGN's Jacobian singular values raised to a power ρ\rhoρ. We dub ρ\rhoρ the polarity\textbf{polarity}polarity parameter and prove that ρ\rhoρ focuses the DGN sampling on the modes (ρ<0\rho < 0ρ<0) or anti-modes (ρ>0\rho > 0ρ>0) of the DGN output-space distribution. We demonstrate that nonzero polarity values achieve a better precision-recall (quality-diversity) Pareto frontier than standard methods, such as truncation, for a number of state-of-the-art DGNs. We also present quantitative and qualitative results on the improvement of overall generation quality (e.g., in terms of the Frechet Inception Distance) for a number of state-of-the-art DGNs, including StyleGAN3, BigGAN-deep, NVAE, for different conditional and unconditional image generation tasks. In particular, Polarity Sampling redefines the state-of-the-art for StyleGAN2 on the FFHQ Dataset to FID 2.57, StyleGAN2 on the LSUN Car Dataset to FID 2.27 and StyleGAN3 on the AFHQv2 Dataset to FID 3.95. Demo: bit.ly/polarity-samp

View on arXiv
Comments on this paper