ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.01785
11
40

On Learning Contrastive Representations for Learning with Noisy Labels

3 March 2022
Linya Yi
Sheng Liu
Qi She
A. McLeod
Boyu Wang
    NoLa
ArXivPDFHTML
Abstract

Deep neural networks are able to memorize noisy labels easily with a softmax cross-entropy (CE) loss. Previous studies attempted to address this issue focus on incorporating a noise-robust loss function to the CE loss. However, the memorization issue is alleviated but still remains due to the non-robust CE loss. To address this issue, we focus on learning robust contrastive representations of data on which the classifier is hard to memorize the label noise under the CE loss. We propose a novel contrastive regularization function to learn such representations over noisy data where label noise does not dominate the representation learning. By theoretically investigating the representations induced by the proposed regularization function, we reveal that the learned representations keep information related to true labels and discard information related to corrupted labels. Moreover, our theoretical results also indicate that the learned representations are robust to the label noise. The effectiveness of this method is demonstrated with experiments on benchmark datasets.

View on arXiv
Comments on this paper