ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.01754
14
67

PINA: Learning a Personalized Implicit Neural Avatar from a Single RGB-D Video Sequence

3 March 2022
Zijian Dong
Chen Guo
Jie Song
Xu Chen
Andreas Geiger
Otmar Hilliges
    3DH
ArXivPDFHTML
Abstract

We present a novel method to learn Personalized Implicit Neural Avatars (PINA) from a short RGB-D sequence. This allows non-expert users to create a detailed and personalized virtual copy of themselves, which can be animated with realistic clothing deformations. PINA does not require complete scans, nor does it require a prior learned from large datasets of clothed humans. Learning a complete avatar in this setting is challenging, since only few depth observations are available, which are noisy and incomplete (i.e. only partial visibility of the body per frame). We propose a method to learn the shape and non-rigid deformations via a pose-conditioned implicit surface and a deformation field, defined in canonical space. This allows us to fuse all partial observations into a single consistent canonical representation. Fusion is formulated as a global optimization problem over the pose, shape and skinning parameters. The method can learn neural avatars from real noisy RGB-D sequences for a diverse set of people and clothing styles and these avatars can be animated given unseen motion sequences.

View on arXiv
Comments on this paper