ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.01382
25
15

Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data Programming

2 March 2022
Cheng-Yu Hsieh
Jieyu Zhang
Alexander Ratner
ArXivPDFHTML
Abstract

Weak Supervision (WS) techniques allow users to efficiently create large training datasets by programmatically labeling data with heuristic sources of supervision. While the success of WS relies heavily on the provided labeling heuristics, the process of how these heuristics are created in practice has remained under-explored. In this work, we formalize the development process of labeling heuristics as an interactive procedure, built around the existing workflow where users draw ideas from a selected set of development data for designing the heuristic sources. With the formalism, we study two core problems of how to strategically select the development data to guide users in efficiently creating informative heuristics, and how to exploit the information within the development process to contextualize and better learn from the resultant heuristics. Building upon two novel methodologies that effectively tackle the respective problems considered, we present Nemo, an end-to-end interactive system that improves the overall productivity of WS learning pipeline by an average 20% (and up to 47% in one task) compared to the prevailing WS approach.

View on arXiv
Comments on this paper