ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.01225
16
85

Video Question Answering: Datasets, Algorithms and Challenges

2 March 2022
Yaoyao Zhong
Junbin Xiao
Wei Ji
Yicong Li
Wei Deng
Tat-Seng Chua
ArXivPDFHTML
Abstract

Video Question Answering (VideoQA) aims to answer natural language questions according to the given videos. It has earned increasing attention with recent research trends in joint vision and language understanding. Yet, compared with ImageQA, VideoQA is largely underexplored and progresses slowly. Although different algorithms have continually been proposed and shown success on different VideoQA datasets, we find that there lacks a meaningful survey to categorize them, which seriously impedes its advancements. This paper thus provides a clear taxonomy and comprehensive analyses to VideoQA, focusing on the datasets, algorithms, and unique challenges. We then point out the research trend of studying beyond factoid QA to inference QA towards the cognition of video contents, Finally, we conclude some promising directions for future exploration.

View on arXiv
Comments on this paper