ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.00160
16
2

Semantic Sentence Composition Reasoning for Multi-Hop Question Answering

1 March 2022
Qianglong Chen
    LRM
ArXivPDFHTML
Abstract

Due to the lack of insufficient data, existing multi-hop open domain question answering systems require to effectively find out relevant supporting facts according to each question. To alleviate the challenges of semantic factual sentences retrieval and multi-hop context expansion, we present a semantic sentence composition reasoning approach for a multi-hop question answering task, which consists of two key modules: a multi-stage semantic matching module (MSSM) and a factual sentence composition module (FSC). With the combination of factual sentences and multi-stage semantic retrieval, our approach can provide more comprehensive contextual information for model training and reasoning. Experimental results demonstrate our model is able to incorporate existing pre-trained language models and outperform the existing SOTA method on the QASC task with an improvement of about 9%.

View on arXiv
Comments on this paper