ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.13986
17
15

Contact-Implicit Trajectory Optimization with Hydroelastic Contact and iLQR

28 February 2022
Vince Kurtz
Hai Lin
ArXivPDFHTML
Abstract

Contact-implicit trajectory optimization offers an appealing method of automatically generating complex and contact-rich behaviors for robot manipulation and locomotion. The scalability of such techniques has been limited, however, by the challenge of ensuring both numerical reliability and physical realism. In this paper, we present preliminary results suggesting that the Iterative Linear Quadratic Regulator (iLQR) algorithm together with the recently proposed pressure-field-based hydroelastic contact model enables reliable and physically realistic trajectory optimization through contact. We use this approach to synthesize contact-rich behaviors like quadruped locomotion and whole-arm manipulation. Furthermore, open-loop playback on a Kinova Gen3 robot arm demonstrates the physical accuracy of the whole-arm manipulation trajectories. Code is available at https://bit.ly/ilqr_hc and videos can be found at https://youtu.be/IqxJKbM8_ms.

View on arXiv
Comments on this paper