ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.13887
14
9

Probing the Robustness of Trained Metrics for Conversational Dialogue Systems

28 February 2022
Jan Deriu
Don Tuggener
Pius von Daniken
Mark Cieliebak
    AAML
ArXivPDFHTML
Abstract

This paper introduces an adversarial method to stress-test trained metrics to evaluate conversational dialogue systems. The method leverages Reinforcement Learning to find response strategies that elicit optimal scores from the trained metrics. We apply our method to test recently proposed trained metrics. We find that they all are susceptible to giving high scores to responses generated by relatively simple and obviously flawed strategies that our method converges on. For instance, simply copying parts of the conversation context to form a response yields competitive scores or even outperforms responses written by humans.

View on arXiv
Comments on this paper