ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.13730
37
9

Efficient NIZKs and Signatures from Commit-and-Open Protocols in the QROM

28 February 2022
Jelle Don
Serge Fehr
Christian Majenz
Christian Schaffner
ArXivPDFHTML
Abstract

Commit-and-open Sigma-protocols are a popular class of protocols for constructing non-interactive zero-knowledge arguments and digital-signature schemes via the Fiat-Shamir transformation. Instantiated with hash-based commitments, the resulting non-interactive schemes enjoy tight online-extractability in the random oracle model. Online extractability improves the tightness of security proofs for the resulting digital-signature schemes by avoiding lossy rewinding or forking-lemma based extraction. In this work, we prove tight online extractability in the quantum random oracle model (QROM), showing that the construction supports post-quantum security. First, we consider the default case where committing is done by element-wise hashing. In a second part, we extend our result to Merkle-tree based commitments. Our results yield a significant improvement of the provable post-quantum security of the digital-signature scheme Picnic. Our analysis makes use of a recent framework by Chung et al. [arXiv:2010.11658] for analysing quantum algorithms in the QROM using purely classical reasoning. Therefore, our results can to a large extent be understood and verified without prior knowledge of quantum information science.

View on arXiv
Comments on this paper