ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.13072
19
1

Adversarial Contrastive Self-Supervised Learning

26 February 2022
Wentao Zhu
Hang Shang
Tingxun Lv
Chao Liao
Sen Yang
Ji Liu
    SSL
ArXivPDFHTML
Abstract

Recently, learning from vast unlabeled data, especially self-supervised learning, has been emerging and attracted widespread attention. Self-supervised learning followed by the supervised fine-tuning on a few labeled examples can significantly improve label efficiency and outperform standard supervised training using fully annotated data. In this work, we present a novel self-supervised deep learning paradigm based on online hard negative pair mining. Specifically, we design a student-teacher network to generate multi-view of the data for self-supervised learning and integrate hard negative pair mining into the training. Then we derive a new triplet-like loss considering both positive sample pairs and mined hard negative sample pairs. Extensive experiments demonstrate the effectiveness of the proposed method and its components on ILSVRC-2012.

View on arXiv
Comments on this paper