ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.12936
27
3

Automated Parkinson's Disease Detection and Affective Analysis from Emotional EEG Signals

21 February 2022
R. Parameshwara
S. Narayana
Murugappan Murugappan
Subramanian Ramanathan
Ibrahim Radwan
Roland Göcke
ArXivPDFHTML
Abstract

While Parkinson's disease (PD) is typically characterized by motor disorder, there is evidence of diminished emotion perception in PD patients. This study examines the utility of affective Electroencephalography (EEG) signals to understand emotional differences between PD vs Healthy Controls (HC), and for automated PD detection. Employing traditional machine learning and deep learning methods, we explore (a) dimensional and categorical emotion recognition, and (b) PD vs HC classification from emotional EEG signals. Our results reveal that PD patients comprehend arousal better than valence, and amongst emotion categories, \textit{fear}, \textit{disgust} and \textit{surprise} less accurately, and \textit{sadness} most accurately. Mislabeling analyses confirm confounds among opposite-valence emotions with PD data. Emotional EEG responses also achieve near-perfect PD vs HC recognition. {Cumulatively, our study demonstrates that (a) examining \textit{implicit} responses alone enables (i) discovery of valence-related impairments in PD patients, and (ii) differentiation of PD from HC, and (b) emotional EEG analysis is an ecologically-valid, effective, facile and sustainable tool for PD diagnosis vis-\á-vis self reports, expert assessments and resting-state analysis.}

View on arXiv
Comments on this paper