ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.12404
20
8

Exploiting Problem Structure in Deep Declarative Networks: Two Case Studies

24 February 2022
Stephen Gould
Dylan Campbell
Itzik Ben-Shabat
Chamin Pasidu Hewa Koneputugodage
Zhiwei Xu
ArXivPDFHTML
Abstract

Deep declarative networks and other recent related works have shown how to differentiate the solution map of a (continuous) parametrized optimization problem, opening up the possibility of embedding mathematical optimization problems into end-to-end learnable models. These differentiability results can lead to significant memory savings by providing an expression for computing the derivative without needing to unroll the steps of the forward-pass optimization procedure during the backward pass. However, the results typically require inverting a large Hessian matrix, which is computationally expensive when implemented naively. In this work we study two applications of deep declarative networks -- robust vector pooling and optimal transport -- and show how problem structure can be exploited to obtain very efficient backward pass computations in terms of both time and memory. Our ideas can be used as a guide for improving the computational performance of other novel deep declarative nodes.

View on arXiv
Comments on this paper