ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.12257
14
9

A Perceptual Measure for Evaluating the Resynthesis of Automatic Music Transcriptions

24 February 2022
Federico Simonetta
F. Avanzini
Stavros Ntalampiras
ArXivPDFHTML
Abstract

This study focuses on the perception of music performances when contextual factors, such as room acoustics and instrument, change. We propose to distinguish the concept of "performance" from the one of "interpretation", which expresses the "artistic intention". Towards assessing this distinction, we carried out an experimental evaluation where 91 subjects were invited to listen to various audio recordings created by resynthesizing MIDI data obtained through Automatic Music Transcription (AMT) systems and a sensorized acoustic piano. During the resynthesis, we simulated different contexts and asked listeners to evaluate how much the interpretation changes when the context changes. Results show that: (1) MIDI format alone is not able to completely grasp the artistic intention of a music performance; (2) usual objective evaluation measures based on MIDI data present low correlations with the average subjective evaluation. To bridge this gap, we propose a novel measure which is meaningfully correlated with the outcome of the tests. In addition, we investigate multimodal machine learning by providing a new score-informed AMT method and propose an approximation algorithm for the ppp-dispersion problem.

View on arXiv
Comments on this paper