ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.11219
13
5

No-Regret Learning with Unbounded Losses: The Case of Logarithmic Pooling

22 February 2022
Eric Neyman
Tim Roughgarden
ArXivPDFHTML
Abstract

For each of TTT time steps, mmm experts report probability distributions over nnn outcomes; we wish to learn to aggregate these forecasts in a way that attains a no-regret guarantee. We focus on the fundamental and practical aggregation method known as logarithmic pooling -- a weighted average of log odds -- which is in a certain sense the optimal choice of pooling method if one is interested in minimizing log loss (as we take to be our loss function). We consider the problem of learning the best set of parameters (i.e. expert weights) in an online adversarial setting. We assume (by necessity) that the adversarial choices of outcomes and forecasts are consistent, in the sense that experts report calibrated forecasts. Imposing this constraint creates a (to our knowledge) novel semi-adversarial setting in which the adversary retains a large amount of flexibility. In this setting, we present an algorithm based on online mirror descent that learns expert weights in a way that attains O(Tlog⁡T)O(\sqrt{T} \log T)O(T​logT) expected regret as compared with the best weights in hindsight.

View on arXiv
Comments on this paper