ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.11141
14
8

Nonconvex Extension of Generalized Huber Loss for Robust Learning and Pseudo-Mode Statistics

22 February 2022
Kaan Gokcesu
Hakan Gokcesu
ArXivPDFHTML
Abstract

We propose an extended generalization of the pseudo Huber loss formulation. We show that using the log-exp transform together with the logistic function, we can create a loss which combines the desirable properties of the strictly convex losses with robust loss functions. With this formulation, we show that a linear convergence algorithm can be utilized to find a minimizer. We further discuss the creation of a quasi-convex composite loss and provide a derivative-free exponential convergence rate algorithm.

View on arXiv
Comments on this paper