ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.10550
11
0

Imbalanced Classification via Explicit Gradient Learning From Augmented Data

21 February 2022
Bronislav Yasinnik
Moshe Salhov
Ofir Lindenbaum
Amir Averbuch
ArXivPDFHTML
Abstract

Learning from imbalanced data is one of the most significant challenges in real-world classification tasks. In such cases, neural networks performance is substantially impaired due to preference towards the majority class. Existing approaches attempt to eliminate the bias through data re-sampling or re-weighting the loss in the learning process. Still, these methods tend to overfit the minority samples and perform poorly when the structure of the minority class is highly irregular. Here, we propose a novel deep meta-learning technique to augment a given imbalanced dataset with new minority instances. These additional data are incorporated in the classifier's deep-learning process, and their contributions are learned explicitly. The advantage of the proposed method is demonstrated on synthetic and real-world datasets with various imbalance ratios.

View on arXiv
Comments on this paper